Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.

نویسندگان

  • Scott A Epstein
  • Sandra L Blair
  • Sergey A Nizkorodov
چکیده

Primary and secondary organic aerosols (POA and SOA) contain a complex mixture of multifunctional chemicals, many of which are photolabile. Much of the previous work that aimed to understand the chemical evolution (aging) of POA and SOA has focused on the reactive uptake of gas-phase oxidants by particles. By stripping volatile compounds and ozone from α-pinene ozonolysis SOA with three 1-m-long denuders, and exposing the residual particles in a flow cell to near-ultraviolet (λ>300 nm) radiation, we find that condensed-phase photochemistry can induce significant changes in SOA particle size and chemical composition. The particle-bound organic peroxides, which are highly abundant in α-pinene ozonolysis SOA (22 ± 5% by weight), have an atmospheric photolysis lifetime of about 6 days at a 24-h average solar zenith angle (SZA) of 65° experienced at 34° latitude (Los Angeles) in the summer. In addition, the particle diameter shrinks 0.56% per day under these irradiation conditions as a result of the loss of volatile photolysis products. Experiments with and without the denuders show similar results, suggesting that condensed-phase processes dominate over heterogeneous reactions of particles with organic vapors, excess ozone, and gas-phase free radicals. These condensed-phase photochemical processes occur on atmospherically relevant time scales and should be considered when modeling the evolution of organic aerosol in the atmosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to...

متن کامل

A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, 1-carene, and limonene was investigated using a dark flowthrough reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gasphase chemistry suggests that differences in observed aerosol yie...

متن کامل

Ozonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields)

[1] Despite a number of smog chamber studies of the a-pinene/O3 system, the effect of temperature on a-pinene secondary organic aerosol (SOA) mass fractions (or yields) remains poorly understood. In this study, the temperature dependence of secondary organic aerosol mass fractions (AMF) during ozonolysis of a-pinene is investigated in a temperature controlled smog chamber. Experiments were perf...

متن کامل

Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments

The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the ...

متن کامل

Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis

Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 19  شماره 

صفحات  -

تاریخ انتشار 2014